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Corrigendum
1H-NMR and charge transport in metallic
polypyrrole at ultra-low temperatures and high
magnetic fields
K Jugeshwar Singh, W G Clark, K P Ramesh and Reghu
Menon 2008 J. Phys.: Condens. Matter 20 465208

It has come to the attention of the authors that in the above
article a mistake has occured in figure 1. The x-axis label of
inset (a) should read T (K), instead of T (mK). Further to this,
in the caption of figure 1 it should read T < 350 mK instead of
T < 150 mK.
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Abstract
The temperature dependence of conductivity, proton spin relaxation time (T1) and
magnetoconductance (MC) in metallic polypyrrole (PPy) doped with PF−

6 have been carried out
at mK temperatures and high magnetic fields. At T < 1 K both electron–electron interaction
(EEI) and hopping contributes to conductivity. The temperature dependence of a proton T1 is
classified in three regimes: (a) for T < 6 K—relaxation mechanism follows a modified
Korringa relation due to EEI and disorder, (b) for 6 K < T < 50 K—relaxation mechanism is
via spin diffusion to the paramagnetic centers and (c) for T > 50 K—relaxation is due to the
dipolar interaction modulated by the reorientation of the symmetric PF6 groups following the
Bloembergen, Purcell and Pound (BPP) model. The data analysis shows that the Korringa ratio
is enhanced by an order of magnitude. The positive and negative MC at T < 250 mK is due to
the contributions from weak localization and Coulomb-correlated hopping transport,
respectively. The role of EEI is observed to be consistent in conductivity, T1 and MC data,
especially at T < 1 K.

1. Introduction

A combined investigation of both conductivity and proton spin
lattice relaxation time, especially at very low temperatures
and high magnetic fields, is really lacking in metallic
conducting polymers. It has been found that the usual studies
of conductivity, infrared reflectivity, magnetoresistance,
thermopower, etc, are not adequate enough to fully resolve
the issues regarding the metallic state in conducting polymers,
since it is well known that infinitesimal disorder can localize
the states in one-dimensional (1D) electronic systems and it
is not trivial to attain the metallic state [1]. Nevertheless, the
intrinsic quasi-one-dimensionality and presence of substantial
disorder do not hamper the metallic state in many conducting
polymers. Although this puzzle has been studied for the past
several years, how the delocalized electronic states emerge to
form a finite density of states at the Fermi level in such a highly
disordered quasi-1D is yet to be understood.

From earlier studies it is known that the metal–
insulator (M–I) transition in polypyrrole (PPy) doped with
tetrabutylammonium hexafluorophosphate (TBAPF6) can be
controlled by varying the extent of disorder [2, 3]. The x-
ray diffraction studies have shown that, as crystallinity and
crystalline coherence length increases, the system becomes
more metallic and the pyrrole rings in ordered regions stack
to form quasi-2D type structures [4]. Moreover, high quality
samples show a metallic positive temperature coefficient of
resistivity (TCR) at T < 20 K, with a large finite conductivity
(>100 S cm−1) as T → 0 K. Hence PPy–PF−

6 is an ideal
system to carry out conductivity and spin–lattice relaxation
time studies at mK temperatures [5].

Nuclear magnetic resonance spin lattice relaxation (T1)
is an important experimental parameter to characterize the
molecular motions in solids. In metals like Cu, Li, Al,
etc, the dominant relaxation mechanism is due to the s-
contact hyperfine interaction which couples the nuclear spins
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with the conduction electrons and it follows the well-known
Korringa relation at low temperatures [6–10]. In contrast, in
disordered metals like conducting polymers, etc, in which both
electron–electron interaction (EEI) and disorder play dominant
roles in low temperature charge transport, the usual Korringa
relation is observed to be not satisfactory [11–20]. Such
systems tend to have an enhanced Korringa ratio due to the
contributions from disorder and EEI [21–23]; hence the simple
Korringa relation has to be modified in the case of conducting
polymers. In this regard, the temperature dependence of
T1 helps us to understand how the electronic properties are
modified in the presence of electron–electron correlation and
disorder. The relaxation mechanisms in such systems are
mainly due to (1) dipolar interaction between homonuclear
spins and heteronuclear spins; (2) interaction of nuclei with
conduction electrons (mobile paramagnetic centers) and (3)
interaction of the nuclei with the localized, fixed paramagnetic
centers [14]. The proton spin relaxation data over a wide range
of temperature can sort out the appropriate mechanism.

In this paper the conductivity, magnetoconductance (MC)
and the proton spin lattice relaxation time in metallic PPy–
PF−

6 have been investigated down to 20 mK and at high
magnetic fields. T1 as a function of temperature has been
analyzed by using the modified Korringa relation to elucidate
the contribution from EEI, disorder, etc, and the different
relaxation mechanisms present at various temperature ranges
have been analyzed. The role of EEI in low temperature
conductivity and MC has been observed, and this is consistent
with the enhanced Korringa ratio due to EEI.

2. Experimental details

Highly conducting PPy films, doped with hexafluorophosphate
(PF−

6 ), are prepared by low temperature electrochemical
polymerization at −30 ◦C [2, 3]. Free-standing films, of
thickness ∼20 μm, are peeled off from the electrode for
both conductivity and NMR studies. The room temperature
conductivity and resistivity ratios [R1.4 K/R300 K] of samples
are ∼300 S cm−1 and ∼2, respectively. Magnetoresistance
(MR) measurements at very ultra-low temperatures (20 and
70 mK) and high field (0–16 T) were carried out at the National
High Field Magnetic Lab at Tellahasse, FL, by the standard
four-probe technique, and the current passing through the
sample was low enough to avoid any Joule heating effects (less
than nanowatts) at mK temperatures [24]. Proton NMR T1

measurements have been carried out at four different Larmor
frequencies (260, 383, 635 and 960 MHz).

3. Result and discussion

3.1. Conductivity studies

The temperature dependence of conductivity of a typical high
quality PPy–PF6 film is shown in figure 1. As reported before,
a large finite conductivity (∼150 S cm−1) as T → 0 K
has been observed, indicating the intrinsic metallic nature of
these systems. Furthermore, the temperature dependence of
conductivity of PPy–PF6, among various types of conducting
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Figure 1. Conductivity versus T for PPy–PF6. Inset: (a) σ versus T
for T < 1 K at 0 and 8 T. The solid line is a fit to equation (7). (b)
ln σ versus T −1/3 for T < 150 mK. The solid line is a fit to
equation (8).

polymers, is quite peculiar in that a positive temperature
coefficient of resistance (TCR) has been observed below 20 K.
Even in considerably more metallic conducting polymers like
doped oriented polyacetylene this low temperature positive
TCR is rarely observed [25]. This, of course, warrants a
more detailed investigation of the temperature dependence of
conductivity in PPy–PF6 at millikelvin temperatures. In this
regard the earlier studies in PPy–PF6 were mainly focused
at temperatures above 1 K and quantum corrections to low
temperature transport have been observed [26]. However, it
is of considerable importance to know how this positive TCR
and the associated quantum transport evolves at millikelvin
temperatures, and this may give more insight into the charge
transport mechanism and the nature of the metallic state in such
disordered quasi-1D systems at ultra-low temperatures.

The room temperature conductivity of PPy–PF6 samples
is ∼300 S cm−1. These samples show a negative TCR down
to 20 K, unlike in the case of metallic polyaniline samples in
which a positive TCR was observed down to 150 K [27, 28].
Hence the nature of nanoscale disorder is different, even
though the room temperature conductivity of both systems is
nearly the same. In the top inset of figure 1, the conductivity
data below 1 K, at 0 and 8 T, are shown. Although the
conductivity values below 1 K are around 150 S cm−1, the
weak negative TCR in the temperature range of 1 K–250 mK
indicates the role played by disorder-induced localization, and
further below 250 mK the drop in conductivity increases, as
shown in the insets in figure 1. Furthermore, the conductivity at
8 T is lower with respect to that at 0 T, suggesting that magnetic
field enhances the localization effects, though it is not as severe
as that observed in systems near the insulating regime of the
metal–insulator transition [26, 28]. Nevertheless, the data for
T < 250 mK, as shown in inset ‘b’ of figure 1, fitted to a
hopping conduction model, suggest the system is just on the
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Table 1. Comparison of the fitted parameters in equation (5a) with similar systems.

Sample Ref.
m
(S cm−1 K−1)

m ′

(S cm−1 K−1)α1 γ Fσ

D
(cm2 s−1)

PPy–PF6 (present work) 2.44 7.35 7.1 0.66 8.1 × 10−2

PEDOT–PF6
a [32] −3.02 7.03 7.66 1.56 6.9 × 10−2

PANI–AMPSA [27] — — 9.59 — 4.4 × 10−2

PANI–CSA [33] 10.8 19.8 18.3 0.5 1.25 × 10−2

a PEDOT–PF6: poly(3,4-ethylenedioxy-thiophene)–PF6.

insulating side at ultra-low temperatures, in spite of the large
finite conductivity. This indicates that disorder affects the inter-
chain transport and metallic state at ultra-low temperatures.

This data in inset ‘a’ of figure 1 has been analyzed by using
the interaction–localization model for a disordered metallic
system, and the fit looks satisfactory in the low temperature
region, till the data deviates below 250 mK. According to this
model the conductivity can be expressed as [29–31]

σ(T ) = σ(0)+ mT 1/2 + BT p/2 (1)

m = α1
[

4
3 − 3

2γ Fσ
]

(2)

α1 =
[

e2

h̄

] [
1.3

4π2

] [
kB

2h̄ D

]1/2

(3)

where σ(0) ∼ 0.1e2/h̄Lcorr (Lcorr being the correlation length)
and γ Fσ is the interaction term (γ Fσ > 0). Here the
value of γ depends on the band structure, Fσ is the Hartree
factor and α1 in equation (3) is expressed in terms of D,
where D is the diffusion coefficient. The second term in
equation (1) is the lowest order correction to the conductivity
arising from electron–electron interactions (EEI) and the third
term is the finite temperature localization correction to the
less disordered limit. The third term is determined by the
temperature dependence of the inelastic scattering rate τ−1

in (∝
T p) of the dominant dephasing mechanism. For electron–
phonon scattering, p = 2.5–3; for inelastic electron scattering,
p = 2 and 1.5 in the clean and dirty limits, respectively. Both
σ(0) and the pre-factor m depend on the magnetic field as well
as on pressure [25, 26]. In disordered metals, EEI plays an
important role in low temperature transport and the third term
is not considered for the analysis. The EEI contribution to the
low temperature conductivity at zero magnetic field σI (T ) can
be expressed as

σ(T ) → σI (T ) = σ(0)+ mT 1/2. (4)

However, in the presence of sufficiently high fields such
that gμB H � kBT , where g is the g value of an electron
and μB is the Bohr magneton (i.e. when the field exceeds
the limit of Zeeman splitting), equation (4) gets modified to
equation (5):

σI (H, T ) = σ(H, 0)+ m ′T 1/2 (5a)

m ′ = α1
[

4
3 − 1

2γ Fσ
]

(5b)

where σ(0) and m in equation (4) change to σ(H, 0) and m ′
in equation (5a). The data in the inset in figure 1 at 0 and
8 T are fitted to equations (4) and (5a), respectively. The

fitted parameters are m = 2.44 S cm−1 K−1/2 and m ′ =
7.35 S cm−1 K−1/2. This gives α1 ∼ 7.1 S cm−1 K−1/2 and
γ Fσ ∼ 0.66, which in turn gives the diffusion constant,
D = 8.1 × 10−2 cm2 s−1. A comparison of these parameters
with those reported in similar systems has been compiled in
table 1. The values of α1 and γ Fσ are in close agreement
with the earlier reports [27, 32, 33]. However, the data below
250 mK deviate from this model, as in inset ‘a’ of figure 1.
As mentioned before this decrease in conductivity is due to the
disorder-induced hopping transport at ultra-low temperatures.
The best fit to the conductivity below 155 mK follows a T −1/3

dependence, which can be ascribed to the dominant role of
hopping transport among the slightly disordered 2D regions
in the system. Furthermore, the implications of this variation
in charge transport above and below 250 mK are observed in
magnetoconductance data, as described in section 3.3.

3.2. Proton spin lattice relaxation (T1)

Proton T1 experiments have been carried out at 260, 383, 635
and 960 MHz as a function of temperature. The measurements
at ultra-low temperature from 50 mK to 10 K are carried out
at 260 and 635 MHz, while in the range of 1–300 K at 383
and 960 MHz. The proton (1/T1) versus temperature plot at
all four frequencies is shown in figure 2, and T1 is observed
to be dependent on both frequency and temperature. Part
of these studies was reported by Clark et al [34]. We have
also given a plot of 1/T1 versus T of copper in figure 2 for
comparison. In a conventional metal, 1/T1 ∝ T (Korringa
relaxation) and is independent of the field (B0) or NMR
frequency ( fNMR) except for extremely low T . However, when
there is thermal expansion of the lattice, a small variation from
1/T1 ∝ T occurs. The reason 1/T1 is independent of B0

in a conventional metal is that the correlation time for the
fluctuation of the hyperfine field from conduction electrons is
very short (∼10−15 s, the time for the conduction electron to
cross a hydrogen atom ≈ (atomic separation/Fermi velocity))
and has a very small variation throughout the sample. This
condition generates a power spectrum J (ω) that is independent
of fNMR throughout the NMR frequency range and leads to a
1/T1 that is independent of B0, or fNMR.

Earlier T1 relaxation studies, at lower frequencies, in
metallic polyacetylene and polyaniline have shown weaker
temperature dependences [12]. In a conducting polymer, like
the present one, which have hopping conductivity at lower
temperatures, regions with different electron motion dynamics,
significant electron–electron interactions, etc, it is expected
that there will be a broad distribution of correlation times (τc)

3
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Figure 2. 1H-NMR T1 versus T for PPy–PF6. The 1/T1 versus T of
65Cu at 9.5 MHz (•) [7] is shown. The solid line is a guide to the
eye.

for the hyperfine field at the proton sites that will make J (ω)
to have a significant variation as a function of ω, which in turn
will make the proton 1/T1 dependent on B0 (or fNMR). If this
distribution of τc has significant values for τc > 1/ωNMR, it
will cause a contribution to 1/T1 that decreases with increasing
fNMR, which is observed in our measurements.

The analysis of T1 is carried out in different ranges of
temperatures. In metallic PPy–PF6, the possible relaxation
mechanisms are mainly due to Korringa type, especially
at low temperatures; and at higher temperatures due to
fluctuation of the local fields resulting from the interaction
between the magnetic moments of protons, fluorine nuclei
and the paramagnetic centers. Each of these mechanisms
will contribute to the relaxation process depending on the
temperature range under consideration.

The main relaxation mechanism for the increase in T1 as
a function of frequency is explained by considering the dipolar
coupling between nuclear spins and conduction electrons. In
this case T1 is proportional to the square of the applied
magnetic field H0 (i.e. working frequency) [35]. This is
supported by the observed values of T1 values at two magnetic
fields of 22 and 9 T, as in figure 2. Nevertheless, in typical
metals like Cu this frequency dependence of T1 is not usually
observed. This indicates that the frequency dependence of
T1 in PPy–PF6 is due to the contributions from disorder that
play a role in the relaxation mechanisms. However, this aspect
requires more detailed investigations. Also it is interesting to
compare how much T1 varies as a function of temperature in
various systems. In usual metals like Cu the variation of T1 as a
function of temperature (1–300 K) is limited to three orders of
magnitude [7], while in organic conductors like fluoranthenyl–
PF6 it changes by one order [14]. However, T1 in disordered
systems like metallic glasses (for example, TiCuHx) changes
by one order of magnitude, in the temperature range 111–
500 K [36]. In metallic PPy–PF6, T1 is observed to vary by
two orders of magnitude; hence this behavior is intermediate
between that of conventional metals and disordered metallic
glasses.

3.2.1. T1 data analysis for temperature below 6 K. The large
finite conductivity at ultra-low temperatures show the intrinsic
metallic nature of the system, though a slight nonmetallic
behavior arises due to disorder at T < 250 mK. Hence it
will be quite interesting to verify how far the usual models to
analyze the proton T1 versus temperature data for disordered
metallic systems are applicable in the case of PPy–PF6. In
order to simplify this procedure it is better to understand
the T1 behavior starting with a well-known model system,
for example, the non-interacting electrons in alkali metals.
In alkali metals, the s-contact interaction represents the
only hyperfine coupling mechanism between non-interacting
conduction electrons and nuclear spins (with a gyromagnetic
ratio γn). Then the nuclear spin lattice relaxation time T1

is related to the Knight shift K via the well-known Korringa
relation [6, 37]:

K 2T1T =
(
γe

γn

)2 (
h̄

4πkB

)
(6)

where γe is the electronic gyromagnetic ratio, and kB and h̄
are the Boltzmann constant and the reduced Planck’s constant,
respectively. It is known that spin–lattice relaxation is a
stronger indicator of the hyperfine interaction of nuclei with
free charge carriers than the Knight shift; and due to this
the spin–lattice relaxation rate is observed to be inversely
proportional to T in the usual metals, as shown by Korringa [6].

Nevertheless equation (6) cannot be directly used to
explain the T1 versus T behavior since conducting polymers
are morphologically very different from the usual metals.
Obviously, electron correlations and Coulombic repulsions are
not dealt with in the derivation of the Korringa relation for
metals, and these may be significant in conducting polymers.
In this context Narath and Weaver pointed out that, in the
presence of EEI, the Knight shift in alkali metals is enhanced
by the Stoner factor contribution to that of the free charge
carrier [21, 22]. In addition to this, Shastry and Abrahams have
shown that the relaxation rate (and thus the Korringa ratio) is
significantly enhanced by disorder [23]. Thus, the Korringa
relation for normal metals has to be modified by taking into
consideration the contributions due to EEI and disorder, and
especially in the context of organic and polymeric conductors.
The first theoretical approach to modify the Korringa relation
was attempted by Soda et al in organic conductor systems [11].
This was later expanded by Mehring and coworkers for A3C60

(where A = AsF−
6 , SbF−

6 , PF−
6 ) systems, as [12, 13, 38]

K 2T1T
(

1 + ε

2

)
Co SK = 1 (7)

where C0 = (γn/γe)
2(4πkB/h̄), ε (= Knight shift anisotropy =

d2/a2) is the ratio of the anisotropic and isotropic contributions
to the hyperfine interaction [12], which plays an important role
in the relaxation of organic materials, and SK is the Korringa
enhancement factor which has taken EEI into consideration
along with disorder contributions. The Korringa enhancement
factor contains the spectral density of interaction [13] and is
expressed as

SK = 1

2

(
τ⊥
τs

)1/2 [
3

5
εJ (ωn)+

(
1 + 7

5
ε

)
J (ωe)

]
K0(α)

+ 1
2 (1 + 2ε) K2kF(α). (7a)
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Figure 3. (a) 1H-NMR T1 versus T for T < 400 mK. Straight lines
are fits to equation (7) and the parameters are shown in table 2.
(b) 1H-NMR T1 versus T for 400 mK < T < 6 K. Straight lines are
fits to equation (7) and the parameters are shown in table 2.

In this expression τ⊥ is the inter-chain hopping time, τs

is the phonon scattering time along the chain and α is the
Coulombic repulsion energy. The quantity ε(= d2/a2) is the
ratio of anisotropic to isotropic contribution of the hyperfine
interaction and J (ω) {= [(1 + ω2τ 2

⊥)1/2 + 1]/[2(1 + ω2τ 2
⊥)]},

is the spectral density of interaction with ωe and ωn being
the electron and nuclear precession frequencies, respectively.
In addition to this, K0(α) and K2kF (α) are given by the
expressions: K0(α) = (1−α)1/2 and K2kF (α) = (1−α)2/[1−
αF(2kF)]2; F(2kF) = (1/2)[ln(4.56TF/T )], the Lindhart
function and TF is the Fermi temperature. For classical metals,
ε = 0 and SK = 1, and the Korringa relation is recovered. In
organic conductors, for example fluoranthene–PF6, with highly
anisotropic conduction, SK has values from 50 to 500 and
0 < ε < 4, showing a large deviation from that of a classical
metal [39].

The fits for 1H–T1 data at 260 and 635 MHz in the
temperature range 50–350 mK (figure 3(a)) and 350 mK to
5 K (figure 3(b)) to equation (7) yield straight lines with
different slopes, and they do not pass through the origin. The
straight line fit corresponds to the Korringa-type relaxation
in this temperature range. The change in slopes is related
to the change in Knight shift, and the parameters obtained
by fitting the data to equation (7) are compiled in table 2.
The observed enhancement in Knight shift is due to: (i) EEI
and (ii) the disorder effect. At these ultra-low temperatures,
the relaxation due to paramagnetic centers can be ruled out
as these gets saturated around 4 K for 260 MHz and 10 K
for 635 MHz. Also, other interactions, such as reorientation

Table 2. Parameters of proton spin lattice relaxations (1H-SLR) in
PPy–PF6 derived from the fit to equation (7) (at κ = 10 ppm and
ε = 2).

Temperature (T ) SK (at 260 MHz) SK (at 635 MHz)

20 mK < T < 350 mK 19 12
350 mK < T < 5 K 9.8 5

and heteronuclear interaction, are ruled out at millikelvin
temperatures. An important feature of these fits is that they
show a positive intercept, which implies a finite relaxation time
even at T = 0 K, and this is attributed to the EEI contribution
to the relaxation mechanism.

The above analysis show the importance of EEI and
disorder in the Korringa ratio, κ = C/(K 2T1T ), where
C = (γe/γn)

2(h̄/4πkB). The model developed by Shastry
and Abrahams [23] shows how the Korringa ratio varies as
a function of EEI and disorder. For example, as interaction
strength increases from 0 to 1 the Korringa ratio varies from
0.2 to 2.7, and this variation is related to the total Korringa
enhancement (S), which according to this model varies from
10 to 60. Also, these variations increase when the order
parameter for disorder (kFλ, where kF is the Fermi wavevector
and λ is the mean free path) decreases [23]. Typically in
organic conductors, the Knight shift is in the range of 10–
15 ppm and taking ε ∼ 2 (since 0 < ε < 4) gives
the Korringa enhancement factor, SK of 5–19, which in turn
yields the enhanced Korringa ratio in PPy–PF6 by a factor
of 10–40. Hence, knowing the value of S (10–40) and kFλ

(∼1.2), the interaction strength can be determined and is found
to vary from 0.45 to 0.8. Furthermore, this enhancement
in Korringa ratio is also related to the ratio of magnetic
susceptibility (κ = S(χ0χ

−1)2, where χ0 is the dynamical
susceptibility incorporating the effects of disorder but not due
to interaction and χ is the Pauli spin susceptibility). Thus, from
the already known values of κ and S, the ratio of (χ0χ

−1)
can be determined and it is estimated to be in the range
of 0.44–0.22. Hence the χ0 is less than χ by a factor of
2.27–4.5, implying that the enhancement in κ is more due to
interaction than from disorder (i.e. localization effects). The
consistency of this analysis is further verified by comparing
the values of interaction parameter obtained from this analysis
to that from the low temperature conductivity data. From
equations (5a) and (5b), the interaction parameter (γ Fσ ) is
found to be ∼0.66 (the analysis of MC data gives 0.8, as
shown in section 3.3). Hence the range of values for the
interaction parameter obtained from this modified Korringa
analysis (0.45–0.8) is quite consistent with that obtained from
the conductivity and MC data analysis.

The SK values obtained in the temperature range of 50–
350 mK is almost twice than that obtained in the temperature
range of 350 mK–5 K. The first and second terms in
equation (7a) can be neglected as there is no possibility of
phonon scattering at these mK temperatures, hence only the
third term is considered for data analysis. Therefore SK mainly
depends on the hyperfine anisotropy, ε and the Coulombic
repulsion energy α. Since ε is nearly constant, the change in SK

is mainly due to α, i.e. the electron–electron interaction. From
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parameters are shown in table 3.

equation (7a) it is clear that the higher value of SK is attributed
to higher values of α, implying strong EEI contributions to the
relaxation mechanism at mK temperatures, which is consistent
with both conductivity and magnetoresistance (as explained in
section 3.3) data.

3.2.2. T1 analysis from 6 to 50 K. The following relaxation
mechanisms are taken into account for the analysis of 1H–
T1 data (at 383 MHz) in the temperature range of 6–
300 K: (i) via spin diffusion to paramagnetic centers, (ii)
the translational and orientational motion of electronic spins
and (iii) reorientational motion of symmetric subgroups in
the polymer chain. In some particular temperature range the
motion of electron spins via spin diffusion to paramagnetic
centers (SDPC) is the dominant contribution to proton spin
lattice relaxation. However, this mechanism freezes out at high
magnetic fields and low temperatures. At these conditions
the Zeeman energy is enough to saturate the magnetization
of isolated and pinned electrons, and no longer contributes to
the relaxation mechanism via SDPC. This is evidently seen
from the temperature-independent T1T , in figure 4(a), for 6–
50 K. The vertical arrows (in figure 4(a)) indicate where the
Zeeman energy gμB B = 2kBT , below which the SDPC
process is expected to freeze out (g is the electron g factor, μB

is the Bohr magneton and 2kB is the Boltzmann constant [34]).
Accordingly proton relaxation via SDPC should freeze out at
around 6 K for 383 MHz and 15 K for 960 MHz. Although the

Table 3. Parameters of proton spin–lattice relaxations (1H-SLR) in
PPy–PF6 derived from the fit to equation (8). For definitions of the
parameters, see [21, 22] and the text.

KHH (s−2) KHF (s−2) τ∞,HH (s) τ∞,HF (s)
EHH

(meV)
EHF

(meV)

2.7 × 1010 14.92 × 107 2.07 × 10−12 27.06 × 10−10 79.02 0.91

observed behavior indicates that this mechanism contributes up
to about 50% of the total rate, however, the proton relaxation
due to the translational motion of electrons, especially at
low temperatures, is expected to make some contribution
too. As the dc conductivity (see figure 1) is relatively
large, and its temperature dependence is rather weak in the
range from 6 to 30 K, the proton spin–lattice relaxation due
to the dipolar interaction between conduction electrons and
protons can be equally dominant as the contribution from the
SDPC in this temperature range. The increase in T1T at
higher temperatures is attributed to the relaxation due to the
reorientation of PF6 groups which follow the BPP model [40],
as described below.

3.2.3. T1 analysis above 50 K. The T1 behavior at
temperatures above 50 K, at 383 MHz, is interpreted in terms
of the reorientational motion of symmetric groups such as
PF6. The relaxation of protons is due to the 19F–1H magnetic
dipolar interactions that are modulated by PF6 reorientation
jumps, hydrogen–hydrogen interaction, pyrrole librational and
vibrational motions. The corresponding rate equation in the
BPP model can be expressed as [14–16, 41, 42]

(T1)
−1
BPP = KHF[J (τHF, (ωH − ωF))+ 3J (τHF, ωH )

+ 6J (τHF, (ωH + ωF))] + KHH[J (τHH, ωH )

+ 4J (τHH, 2ωH )] (8)

where J (τi , ωN ) = τi
1+(ωN τi )

2 and a simple Arrhenius law for

τi : τi = τ∞i e
Ei
kB T .

The proton relaxation rate exhibits a maximum around
180 K, as shown in figure 4(b). This type of behavior is
usually seen in systems in which the reorientational motion
plays a dominant role in the relaxation mechanism, and this
is attributed to the BPP model (as in equation (8)). The
fitted parameters are compiled in table 4. The values of
KHF and KHH [35, 42] (see table 3) are obtained by fitting
the experimental values of T1 to equation (8). The value
of KHF is pertinent to the proton relaxation process via the
fluorine atoms in PF6 counter-ions situated in between the PPy
chains, and this is related to the inter-chain charge transport.
It is known that this type of molecular motion can influence
the relaxation rate at high temperatures. Similar behavior
has been observed in organic conductors like fluoranthenyl–
PF6 [14] and in pyrene–hexafluoroantimonate [16]. Since the
interaction constants are inversely proportional to r 6 (where
r is the internuclear distance), the contribution to the values
of T1 is substantially weaker from nuclei situated in the 100
(∼7.3 Å) and 010 (∼6.7 Å) lattice directions in the PPy–PF6

structure. However, the contribution to T1 from the nuclei in
the interplanar direction of 001 (∼3.5 Å) is quite significant.
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Table 4. Transport parameters from the magnetoconductance fit to
equation (10).

Temperature η(T ) Ae Bi (×10−2T ) Be(T ) τi (×10−14 s)

20 mK 0.275 1.13 7.23 11.598 2.32
70 mK 0.312 1.30 7.5 8.849 2.23

The KHF values from the fit can give an estimate for the value
of r (i.e. the H–F vector) = 3.8 Å. This value, obtained from
the fit to equation (8), is quite close to the value of 3.5 Å for
the interplanar distance, as observed from the x-ray data for
PPy–PF6 films [4, 5]. This finding suggests that the analysis of
NMR data using equation (8) is quite appropriate.

3.3. Magnetoconductance analysis

The above data analysis shows the importance of electron–
electron correction effects in both low temperature conductiv-
ity and proton spin relaxation time. It is well known that EEI
can play a significant role in low temperature MC in disordered
metallic systems, and the previous MC studies at T > 1 K in
PPy–PF6 have indicated the same; however, the MC data for
T < 1 K have shown some anomalous features.

The MC data for metallic PPy–PF6 at 500, 370, 70 and
20 mK are shown in figure 5. The data show contributions
from both positive and negative MC, whereas the MC for
T > 1 K is negative at all fields. Hence for T < 1 K
an additional mechanism is contributing to the MC. At 500
and 370 mK, the MC is slightly negative at low fields and it
becomes positive at higher fields. This type of behavior is
expected when both weak localization (i.e. positive MC) and
EEI (i.e. negative MC) are contributing to the MC. At high
fields, the MC arises mainly from the interaction contribution,
since the weak localization contribution is less important at
strong fields, especially at T > 300 mK [30]. The EEI
contribution to high field MC is given by

�I (H, T ) = σ(H, T )− σ(0, T )


∑

I

(H, T ) = α1γ Fσ T 1/2 − 0.77α1(gμB/kB)
1/2γ Fσ H 1/2

gμB H � kBT .

(9)

The straight line fit, for the data at 500 and 370 mK,
to equation (9) is shown in the inset of figure 5. From the
slope of the H 1/2 fits, the value of γ Fσ can be determined
as 0.80, which is rather close to the value of γ Fσ (= 0.66)
obtained from conductivity data from equations (2) and (5b).
This validates the internal consistency in the data analysis.
Moreover this value of γ Fσ is quite similar to the values
reported in earlier work [2]. This confirms the role of EEI in
low temperature conductivity, proton spin relaxation and MC.

The MC data for 20 and 70 mK are quite different from
those observed at higher temperatures, as shown in figure 5.
The positive MC is unusually large (>40%) and it decreases
considerably at higher magnetic fields. This is expected since
the temperature dependence of conductivity below 155 mK
is dominated by hopping transport, as shown in the inset of
figure 1. However, this large positive MC cannot be accounted

Figure 5. σ/σ versus H for PPy–PF6 at 70 mK () and 20 mK
(◦). The solid line is a fit to equation (10) and the parameters are
shown in table 4. Inset: σ versus H0.5 for PPy–PF6 at 370 mK (◦)
and 500 mK (∗). The solid line is a fit to the linear equation (9).

for within the conventional weak localization and EEI model,
since the upper limits of quantum corrections to MC are less
than 10%. Nevertheless, in some systems large positive MC
has been observed due to various other types of mechanism.
For example, in pregraphitic carbon nanofibers [43, 44], non-
magnetic granular materials [45] and granular aluminum at the
boundary of the superconducting transition [46], such large
positive MC has been reported. Also in systems near the M–
I transition, the mobility edge can be shifted by an external
magnetic field, especially when the magnetic length L H (=
h̄c/eH )1/2 becomes comparable to the localization length
(Lc), and a shift in the mobility edge (Ec) is proportional to
(L H/Lc)

1/η, where h is Planck’s constant and c is the velocity
of light [45–47]. Furthermore, Wang et al have pointed out
another possibility, that the magnetic field can shift the energy
levels of carriers via the Zeeman effect, and this can enhance
the phonon-assisted hopping and a large decrease in resistance;
however, this mechanism is expected at T > 1 K [43–45].
However, these mechanisms cannot comprehensively explain
both the positive and negative contributions to MC observed in
PPy–PF6, at T < 300 mK.

The MC data at T < 300 mK clearly show the presence
of two mechanisms that give rise to the large positive MC
at lower fields, and then its decrease at higher fields. In
PPy–PF6, x-ray diffraction data show the presence of 2D
regions in the system, and the positive MC can account for
the charge transport and scattering mechanism within these 2D
regions. Hikami et al have shown that in weakly disordered
2D systems with negligible spin–orbit coupling and magnetic
scattering, the positive MC can be large at low fields, and this
contribution is expressed by the first part on the right-hand
side of equation (10) [48]. This mechanism is the dominant
contribution to the positive MC, although the observed values
of MC are larger due to the specific nanoscopic scale structural
features of this system in studies [4, 5]. Also possibly some
of the above-mentioned mechanisms for positive MC might
contribute too, yet the fit to equation (10) is observed to be
quite satisfactory. However, at fields above 4 T, the positive
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MC starts to decrease, as observed at both 70 and 20 mK.
This clearly shows the role of another mechanism, especially
at higher fields. Kurobe and Kamimura have suggested a
model based on the field-induced interaction among singly,
doubly and unoccupied states in a disordered system with
on-site Coulomb repulsion [49]. This contribution is largely
arising from the scattering process involved in some of the
highly disordered 2D regions in the system that also give rise
to the observed T −1/3 dependence of conductivity at ultra-low
temperatures. Hence a combination of these two mechanisms,
as expressed in equation (10), can fit the data in the entire range
of magnetic fields [28, 38]. This type of behavior in MC has
been observed by Wang et al [43] in carbon nanofibres and by
Song et al [44] in nanotubes:

σ

σ(0, T )
= −η(T )

[
�

(
1

2
+ Bi

H

)
− log

(
Bi

H

)]

+ Ae
H 2

H 2 + B2
e

(10)

where ψ is the digamma function, H is the magnetic field,
Bi = h/(4eDτi) is the inelastic scattering equivalent magnetic
field, D is the diffusion coefficient, τi is the inelastic scattering
time, Ae is a constant (the saturation of the MC) that indicates
the EEI contribution to MC and Be is the characteristic field for
spin alignment. The first and second parts on the right-hand
side of equation (10) represent the contributions arising from
2D weak localization (in ordered 2D regions) and Coulomb
correlation in hopping transport (in disordered 2D regions),
respectively [50]. The fitted parameters are shown in table 4.
From these parameters the values for τi can be evaluated, at
70 and 20 mK, by using the equation τi = h/(4eDBi). The
calculated values of τi are in agreement with the reported
values [51]. Thus, the analysis of MC data, at ultra-low
temperatures, by using equation (10) is quite appropriate.
Since the values of Ae are quite large the Coulomb correlation
effects are expected to be significant, as is also found from
the earlier analysis of NMR data. Hence the analysis of both
NMR and MC data is observed to be consistent regarding
the importance of Coulomb correlation effects at very low
temperatures.

4. Conclusions

The conductivity, proton spin relaxation time (T1) and
magnetoconductance (MC) in metallic PPy–PF6, at mK
temperatures and high magnetic fields, show the significance
of both EEI and disorder in the charge transport properties of
conducting polymers.

The mechanisms for T1 relaxation, at various temperature
ranges, are as follows:

(a) the proton T1 versus temperature data follow a linear
fit, in the temperature range from 50 to 300 mK, as
expected from the Korringa relation; however, the positive
intercept, as well as the enhancement in Korringa ratio,
imply that the relaxation mechanism is dominated by the
EEI contribution at ultra-low temperatures.

(b) in the intermediate temperature range of 1–40 K, the
SDPC and translational motion of conduction electrons
are responsible for the proton spin–lattice relaxation.
Proton spin–lattice relaxation is due to the SDPC for T ∼
6–40 K; and this contribution freezes out at T ∼ 15 K for
22.6 T and at T ∼ 6 K for 9 T, when the magnetization of
paramagnetic centers saturates.

(c) in the high temperature range of 50–300 K, the dipolar
interaction of 1H–1H and 1H–19F modulated by the
reorientational motion of symmetric groups such as PF6,
and librational, vibrational motion of polymer chain are
responsible for the relaxation.

The MC data show two different behaviors. At T >

250 mK, the negative MC follows an H1/2 dependence,
indicative of the dominance of the EEI contribution. However,
at T < 100 mK both positive and negative MC are observed,
and this is mainly due to the dominant contributions from weak
localization and Coulomb correlations in hopping transport,
respectively; and the fit shows the latter is more significant.
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